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Abstract. In this paper we will discuss the conditions under which the free-electron laser interaction in a
storage ring may reinforce the effect of the Landau damping, thus leading to the suppression of different
types of instabilities. The problem will be discussed both by making use of general arguments and referring
to the specific examples.

PACS. 41.60.Cr Free-electron lasers – 29.20.Dh Storage rings – 05.45.-a Nonlinear dynamics and nonlinear
dynamical systems

1 Introduction

In a Free Electron Laser (FEL), a relativistic electron
beam interacts with an electromagnetic field as it passes
through a periodic magnetic structure forcing particles to
move along sin-like trajectories and, consequently, to emit
radiation. Depending on their starting phases, electrons
go slower or faster after the interaction and this leads
to a clustering further downstream. This microbunching
is, in turn, the source of enhanced (coherent) radiation
emission.

FEL oscillators provide intense, tunable, monochro-
matic and fully coherent radiation in the range from the
infrared to the UV/VUV. In a storage-ring FEL (SRFEL)
the light produced by the electron beam is stored in an
optical cavity and amplified during the successive turns of
the particles in the ring. The amplification is obtained to
the detriment of the electron beam energy spread which
becomes larger when the intracavity power grows. The
heating of the electron bunch due to the laser onset leads
to the reduction of the amplification gain until when it
reaches the level of the cavity losses (laser saturation).
Among oscillators, SRFELs present by far the more com-
plex dynamics. Such complexity originates from the fact
that, unlike a LINAC-based FEL, where the electron beam
is renewed after each passage inside the interaction region,
electrons are recirculated. As a result, at every light-beam
energy exchange the system keeps memory of previous in-
teractions. Moreover, the electron-beam dynamics and, as
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Fig. 1. Schematic diagram reproducing the dynamics of
a SRFEL, including the mutual feedback with the instabilities
generated by the electron-beam interaction with the machine
environment.

a consequence, the light evolution inside the optical cav-
ity are generally influenced by beam interaction with the
machine environment (e.g. the metallic wall of the ring
vacuum chamber).

The block diagram in Figure 1 reproduces the main
features of the dynamics of a SRFEL, including its inter-
play with the instabilities generated by the electron-beam
interaction with the machine environment. By taking the
synchrotron damping time as reference, one can make a
first, albeit crude, distinction between short and long-term
effects. In fact, even though the physical mechanisms oc-
curring at the two temporal scales can be traced back to
a common root, such a distinction reveals to be helpful to
develop an appropriate description of the various elements
characterizing this quite entangled problem.

On the short-term scale, the electron-beam interaction
with the electromagnetic field stored in the optical cav-
ity leads to the light amplification and to the consequent
increase of the electron-beam energy spread and bunch
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length. This heating effect is in turn responsible for the
gain dilution and, therefore, for the FEL saturation. Gen-
erally speaking, the increase of the electron-beam dimen-
sions is also the principal mechanism leading to an atten-
uation of instabilities associated with the particle density.

As to the long-term effect related to the SRFEL dy-
namics, one can observe [1] an increase of the Touschek
lifetime, mainly due to the blow-up of the electron-beam
transverse dimensions, which is in turn induced by the
beam longitudinal heating through a nonzero dispersion
function along the ring.

A number of papers [1–6] have been dedicated, in the
recent past, to investigate the interplay between the laser
dynamics and a particular class of electron-beam insta-
bilities. This is, for example, the case of longitudinal in-
stabilities of saw-tooth type for which the FEL onset and
the instability manifestation have been shown to be com-
petitive phenomena [6]. The instability itself is indeed re-
sponsible for a beam heating which, in turn, induces a
concurrent decrease of the instability growth rate. When
the heating generated by the FEL is dominant, the current
threshold above which the instability develops is shifted
and the instability has no chance to grow. Vice-versa, if
the anomalous bunch lengthening generated by the insta-
bility is so large to reduce the FEL gain below the level
of the optical cavity losses, the laser is no more able to
develop and to counteract the instability. Using a similar
argument, again based on the FEL-instability competi-
tion, it has been shown that the FEL may also counteract
transverse electron-beam instabilities, such as the head-
tail one [3].

The (longitudinal and transverse) beam heating due
to the FEL onset leads to an increase of the amplitudes
of the electron (synchrotron and betatron) oscillations.
As a consequence, electrons experience stronger nonlin-
ear components of the guiding fields and the beam syn-
chrotron and betatron frequency spread is enhanced. This
allowed to interpret the suppression of the saw-tooth in-
stability due to the FEL onset as a genuine manifestation
of stabilization through Landau damping [5,6]. As it is
well-known [7–9], this process occurs when there are sev-
eral oscillators whose natural frequencies are characterized
by a given spread. In this case, an external force (as it can
be the one induced by a coherent instability) in resonance
with the system may provide energy to it without driv-
ing the oscillators to larger amplitudes. The result may
be then a stable beam even in the presence of an active
instability. The strength of the damping mechanism de-
pends on the frequency distribution of the particles.

Aim of this paper is to show that the beneficial effect of
the FEL in terms of strengthening of the Landau damping
is not only limited to the case in which the laser onset and
the instability are similar and, as a consequence, compet-
itive phenomena. In fact, by means of general arguments,
it will be shown that this holds for the whole class of co-
herent instabilities, both in the longitudinal and in the
transverse plane, which may be damped through a suit-
able dilution of the beam dimensions. The analysis will be
supported by a numerical study.

2 FEL-Landau damping interplay
through a nonlinear field

In the transverse electron-beam phase space, the frequen-
cies (tunes) spread depends on the amplitude of the be-
tatron oscillation, due to the nonlinear components of the
guiding field. In [10] this phenomenon has been studied
for the case of octupolar field lenses. According to the
results reported in this paper, the Landau damping man-
ifests itself through an increase of the current threshold
(i.e. the maximum particles’ number), Nth, according to
the relation
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[G(u)2 + 1]
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Here �(Z̄) is the imaginary part of the effective impedance
and B is linked to the strength of the nonlinear field; u ac-
counts for the coherent tune shift induced by the nonlin-
earity, ν and ν0 being the coherent and the zero-amplitude
tunes, respectively; σx stands for the rms value of the hor-
izontal electron-beam dimension.

It is evident that in the above equations σx plays a
crucial role: an increase of the beam dimension provides a
shift of the current threshold. In fact, such an increase may
be induced by the FEL itself. We can indeed envisage the
following mechanism: the FEL produces a beam heating,
determining an increase of the energy spread, which is
in turn responsible for an increase of the electron-beam
transverse dimensions via a non-zero dispersion function
at the octupole location.

As already remarked, this mechanism has been invoked
in [1] to successfully account for the observed increase
of Touscheck lifetime induced by the FEL onset and to
explain the anomalous behaviour of the saturation dy-
namics in presence of a non-vanishing dispersion inside
the undulator.

We can now give an idea of how the various elements
can be combined together by simply reminding that, at
equilibrium, the dimensionless FEL intracavity intensity
and the square ratio of the induced to the natural energy
spread are equal and determined by the equation [11]

√
1 + X

[
1 + 1.7µ2

ε (1 + X)
]

=
1
r
, (4)

with X = (σi/σε,n)2 and r = η/ (0.85g0). Here µε =
4N̂σε,n (N̂ being the number of undulator periods) stands
for the inhomogeneous broadening parameter associated
with the natural energy spread σε,n; σi is the FEL-induced
energy spread, η represents the losses of the optical cavity
and g0 is the FEL small signal gain coefficient [12].
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versus the normal-

ized FEL-induced energy spread X = (σi/σε,n)2. Here µε = 0.1
and A = 4; u = 2 (continuous line) and u = 1 (dotted line).

The concurrent increase of the horizontal dimension is
linked to X by the well-known relation [13]

σx = σ0
x

√
1 + A(1 + X) (5)

where A accounts for the dispersion function at the oc-
tupole location and σ0

x denotes the electron-beam horizon-
tal dimension without the contribution of the dispersion
function.

Combining equations (1)–(5), we can now make a com-
parison between the threshold current with and with-
out the FEL. In Figure 2 we have reported the ratio
R =

[�(Z̄)Nth

]
on

/
[�(Z̄)Nth

]
off

as a function of the
FEL-induced energy spread.

It can be seen that R is above unity when the FEL is
on and increases for larger X values. This leads to a shift
of the current threshold towards higher values. It might
be argued that this conclusion is not correct, because we
are not directly comparing the on and off threshold cur-
rents, but their products with the relevant imaginary parts
of the effective impedance and we have no information on
the behaviour of this last quantity. Even though the model
does not provide such an information, we can observe, on
physical grounds, that an increase of the beam dimension
is always responsible for a weakening of the interaction
between particles through the machine impedance. There-
fore it can be always assumed

�(Z̄)on < �(Z̄)off , (6)

thus enforcing the previous conclusion. In the following
Section we generalize the obtained results.

3 FEL-induced stabilization and Keil-Schnell
criterion

The statement that the FEL onset improves the effective-
ness of the Landau damping can be generalized by invok-
ing the so-called Keil-Schnell criterion [14]. According to
it, the current threshold above which a collective instabil-
ity is no more Landau damped and, therefore, is likely to

manifest itself, is proportional to the beam (synchrotron
or betatron) frequency spread ∆ν:

Nth ∝ ∆ν. (7)

The constant of proportionality depends on the electron-
beam parameters and on the machine impedance. The link
between the threshold current and the tune spread is a
fairly general issue which can be extended to the quasi to-
tality of electron-beam instabilities in storage rings (e.g.
micro-wave instabilities [15]). Note that previous relation
is valid, in the case of a bunched beam, both in the longitu-
dinal and transverse planes [15]. In the preceding Section
we have considered an example in which the FEL supports
Landau damping in the cure of a transverse instability. We
give now a more direct example to further corroborate the
previous arguments. For this purpose we make use of the
KS criterion to specify the threshold current of a generic
(collective) longitudinal instability in the hypothesis of a
coasting beam1 having a given energy distribution and of a
machine impedance characterized by a not strong reactive
part [16,17]:

Nth = F T0
2πE0αc

(Zn/n)e
σ2

ε,n. (8)

Here Zn/n is the broad-band impedance at the nth har-
monic of the revolution frequency, αc is the momentum
compaction factor, E0 the electron-beam energy, T0 is the
beam revolution period, and e is the electron charge. F is
a form factor (close to unity) depending on the beam en-
ergy distribution. The extension of equation (8) to the
case of a bunched beam can be performed by replacing
T0 with

√
2πσt, where σt is the rms value of the bunch

temporal profile. Note that in this case Nth has to be in-
terpreted as the bunch peak current. According to equa-
tion (8), when the average current N exceeds the threshold
value, i.e. when N > Nth, the stability is not ensured.
In this case the energy spread increases proportionally
to

√
N [18]. One therefore gets

N

Nth
=

σ2

σ2
ε,n

≡ δ2. (9)

As is well-known, the natural energy spread is a trade-
off between the damping of the particles’ motion in their
longitudinal phase space (due to the emission of syn-
chrotron radiation) and quantum diffusion effects (due to
the stochastic character of such emission). An additional
source of diffusion may contribute with an extra budget
of energy spread, which combines quadratically with the
natural one, thus shifting the threshold and eventually
suppressing the instability. This is indeed the case of the
FEL and according to equation (9) the FEL-induced en-
ergy spread necessary to counteract the instability is pro-
vided by

σ2
i =

(
δ2 − 1

)
σ2

ε,n, (10)

1 We perform the following analysis in the hypothesis of a
coasting electron beam. In fact, while pulse propagation effects
may influence the physics of single-pass FELs, their role can
be generally neglected as far as SRFEL are concerned.
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where we assumed σ =
√

σ2
ε,n + σ2

i . The current N defined
by equation (9) becomes the new threshold. Now, in order
to evaluate the ratio N/Nth for different initial conditions,
one can start noting that the induced energy spread at
equilibrium can be expressed as [18]

σ2
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. (11)

where
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and

fb = J0(ξ) − J1(ξ), ξ =
1
4

K2

1 + K2/2
. (13)

Here I and Is are the laser intracavity and saturation
intensities (respectively), τs stands for the synchrotron
damping time and K represents the undulator strength.
By recalling that the saturation intensity, the FEL small-
gain coefficient and the electron-beam power, PE , are
linked by the relation [11]

Isg0Σ =
PE

2N̂
(14)

(where Σ is the section of the optical mode) and that

PE
T0

τs
= Ps (15)

(where Ps is the power lost via synchrotron radiation by
the beam during one machine turn), one gets, from equa-
tion (9), the following identity

N

Nth
=

I

Ī
+ 1 (16)

where

Ī =
Ps

4N̂

1.673 µ2
ε

g0Σ
. (17)

Equations (16) and (17) state that when the FEL is oper-
ating at an intracavity intensity I, the electron-beam cur-
rent can exceed the KS threshold by the quantity I/Ī. The
equilibrium intracavity power may also expressed as [11]

I =
Ps

4N̂

1.422 µ2
ε

g0Σ
X. (18)

Thus, finally,
N

Nth
= 0.85X + 1. (19)

Equation (19) may be exploited for estimating how much
one can overcome Nth when the FEL is operating at equi-
librium in a storage ring. A quantitative idea is given in
Figure 3, where the ratio m = N/Nth is reported as a func-
tion of the cavity losses. Note that m becomes quite large
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Fig. 3. m = N/Nth versus the normalized cavity losses r for
µε = 0.1.

for small r values. Equation (19) has not been so far exper-
imentally investigated in a systematic way. However, pre-
liminary measurements carried out at Elettra have shown
that when the FEL is on the instability threshold is in-
creased. A detailed campaign of measurements, aimed at
providing the scaling of N with the FEL intracavity power,
is planned for the near future.

4 Conclusions

This paper can be considered as a point of arrival of a
series of investigations aimed at clarifying the interplay
between FEL, machine environment and non-linearities.
The most significant result of these investigations has been
that the FEL acts as a feedback mechanism for different
type of instabilities and is an active element controlling
the dynamics of the whole system. In this paper we have
proved that the stabilization of the transverse and longi-
tudinal beam dynamics can be, after all, traced back to
the Landau damping reinforcement due to the FEL onset.
It could be argued that SR dedicated to the production
of synchrotron light normally work out of the operating
regions of oscillator FELs, i.e. at relatively high energies
(>1.5 GeV) and exploiting the emission of a large num-
ber of electron bunches. However, an increasing interest
has been recently manifested, e.g. at ELETTRA [19], in
the possibility of performing time-resolved experiments
exploiting the light generated by few bunches at energies
compatible with the FEL operation. In this case the use
of a FEL oscillator could provide a flexible mechanism to
control the stability of the whole machine. Finally, it is
worth pointing out that even though our theoretical ap-
proach seems to be correct, as also proved by a number of
experimental checks [1,6], the results obtained in this as
well as in previous papers are influenced by the assump-
tion that the FEL interaction does not significantly change
the electron-beam energy distribution. This assumption
can be considered correct only in first approximation. In
fact, the FEL growth is not only responsible for a beam
heating, with the consequent increase of the energy spread,
but also for deformation of the distribution [20]. Even
though this effect does not modify the main conclusions
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of our analysis, deviations from equation (19) may occur
as it will be carefully discussed in a forthcoming paper.
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